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This paper studies the class consisting of univalent logharmonic mappings f (z) =
zh(z)g(z) in the unit diskU , where h(z) = exp

( ∞∑
k=1

ak zk

)
and g(z) = exp

( ∞∑
k=1

bk zk

)
are analytic in U and ϕ(z) = zh(z)/g(z) is a normalized starlike analytic function.
A representation theorem for these mappings is obtained, which yields sharp
distortion estimates, and a sharp Bohr radius.

Keywords: univalent logharmonic mappings; starlike logharmonic mappings;
Bohr radius; distortion estimates

AMS Subject Classifications: Primary: 30C35; 30C45; Secondary: 35Q30

1. Introduction

Let H(U ) denote the class of analytic functions defined in the unit disk U := {z : |z| < 1}.
Bohr [1] in 1914 obtained the size of the moduli of the terms in the series expansion for an
analytic self-map f of the unit disk U . This is now known as the Bohr inequality, which
states if f (z) = ∑∞

n=0 anzn ∈ H(U ) and | f (z)| < 1 in U , then
∑∞

n=0 |anzn| ≤ 1 for all
|z| ≤ 1/3. In this instance, we say that the Bohr radius for the class of bounded analytic
functions in the unit disk is 1/3. Bohr in fact obtained the radius 1/6. However, Wiener,
Riesz and Schur (see [2–4]) independently established the sharp inequality for |z| ≤ 1/3.

Other proofs can also be found in [5–7].
The Bohr inequality can also be written in terms of its supremum norm, that is, if

f (z) = ∑∞
n=0 anzn , and ‖ f ‖∞ = sup|z|<1 | f (z)| < ∞, then

∞∑
n=0

∣∣anzn
∣∣ ≤ ‖ f ‖∞

when |z| ≤ 1/3. Under this framework, Boas and Khavinson [8], and Aizenberg [9–12]
have extended the inequality to several complex variables by finding the multidimensional
Bohr radius. More recently, Defant et al. studied the link between the multidimensional
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2 R.M. Ali et al.

Bohr radius and local Banach space theory,[13,14] and obtained the optimal asymptotic
estimate for the n-dimensional Bohr radius on the polydisk U n .[15]

The Bohr inequality has also emerged as an active area of research for operator al-
gebraists after Dixon [16] used it to settle in the negative a conjecture that a Banach
algebra satisfying a non-unital von Neumann inequality is necessarily an operator algebra.
Subsequently, Paulsen and Singh [5], and Blasco [17] have extended the Bohr inequality in
the context of Banach algebras.

For f (z) = ∑∞
n=0 anzn , an equivalent form of the Bohr inequality is

d

( ∞∑
n=0

∣∣anzn
∣∣ , |a0|

)
=

∞∑
n=1

∣∣anzn
∣∣ ≤ d( f (0), ∂U ),

where d is the Euclidean distance. This form makes evident the notion of the Bohr phe-
nomenon for analytic functions mapping the unit disk into a given domain. Let S(�) be the
class consisting of all analytic functions f (z) = ∑∞

n=0 anzn from U into a domain �. The
Bohr radius for � is the largest number r� ∈ (0, 1) satisfying

d

( ∞∑
n=0

∣∣anzn
∣∣ , |a0|

)
=

∞∑
n=1

∣∣anzn
∣∣ ≤ d( f (0), ∂�)

for all f ∈ S(�) and |z| < r�.

If � is convex, it was shown by Aizenberg [18] that the sharp Bohr radius is r� = 1/3.

This result includes the classical case � = U. When � is any proper simply connected
domain, Abu-Muhanna [19] showed that the best Bohr radius is 3 − 2

√
2 ∼= 0.17157. In

two recent papers,[20,21] the Bohr inequality was investigated for � being the exterior of
a compact convex set or concave wedges. The Bohr radius for bounded harmonic functions
was also obtained.

The aim of this paper is to extend the notion of the Bohr phenomenon to the context
of starlike univalent logharmonic mappings of the form f (z) = zh(z)g(z), where h and g
are analytic in U . These logharmonic mappings are described in Section 2. Sharp distortion
estimates are obtained in Section 3, and the final section finds the Bohr radius.

2. Logharmonic mappings

Let B(U ) denote the set of functions a ∈ H(U ) satisfying |a(z)| < 1 in U . A logharmonic
mapping defined in U is a solution of the non-linear elliptic partial differential equation

fz

f
= a

fz

f
,

where the second dilatation function a lies in B(U ). Thus, the Jacobian

J f = | fz |2 (1 − |a|2)
is positive and all non-constant logharmonic mappings are therefore sense-preserving and
open in U . In [22], the class of locally univalent logharmonic mappings is shown to play
an instrumental role in validating the Iwaniec conjecture involving the Beurling–Ahlfors
operator.
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Complex Variables and Elliptic Equations 3

When f is a non-vanishing logharmonic mapping in U , it is known that f can be
expressed as

f (z) = h(z)g(z), (1)

where h and g are in H(U ). In [23], Mao et al. introduced the Schwarzian derivative for
these non-vanishing logharmonic mappings. They established the Schwarz lemma for this
class and obtained two versions of Landau’s theorem. Denote by PL H the class consisting
of logharmonic mappings f in U of the form (1) satisfying Re f (z) > 0 for all z ∈ U . The
subclass PL H(M) defined by

PL H(M) =
{

f : f = h(z)g(z) ∈ PL H ,

∣∣∣∣h(z)

g(z)
− M

∣∣∣∣ < M, M ≥ 1

}

was recently investigated in [24].
If f is a non-constant logharmonic mapping of U which vanishes only at z = 0, then

[25] f admits the representation

f (z) = zm |z|2βmh(z)g(z), (2)

where m is a non-negative integer, Re β > −1/2, and h and g are analytic functions in U
satisfying g(0) = 1 and h(0) 
= 0. The exponent β in (2) depends only on a(0) and can be
expressed by

β = a(0)
1 + a(0)

1 − |a(0)|2 .

Note that f (0) 
= 0 if and only if m = 0, and that a univalent logharmonic mapping in U
vanishes at the origin if and only if m = 1, that is, f has the form

f (z) = z|z|2βh(z)g(z), z ∈ U,

where Re β > −1/2, 0 /∈ (hg)(U ) and g(0) = 1. This class has been widely studied in
the works of [25–29]. In this case, it follows that F(ζ ) = log f (eζ ) are univalent harmonic
mappings of the half-plane {ζ : Re(ζ ) < 0}. Studies on univalent harmonic mappings can
be found in [30–37]. Such mappings are closely related to the theory of minimal surfaces
(see [38,39]).

Denote by SLh the class consisting of univalent logharmonic maps f of the form

f (z) = zh(z)g(z)

with the normalization h(0) = g(0) = 1. This paper gives emphasis to the subclass ST 0
Lh

consisting of functions f ∈ SLh which maps U onto a starlike domain (with respect to
the origin). Thus, the linear segment joining the origin to every point f (z) lies entirely
in f (U ). Starlike logharmonic mappings is an active subject of investigation, and several
recent works include those of [40–42].

3. Distortion theorem

Let A denote the class of analytic functions f in U normalized by the conditions f (0) =
0 = f ′(0) − 1. Further let S∗ be the class consisting of functions f ∈ A such that f (U )

is a starlike domain. We first establish an integral representation for starlike logharmonic
mappings.
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4 R.M. Ali et al.

Theorem A [43, Corollary 3.6] Let p be analytic in U with p(0) = 1. Then Re p(z) > 0
in U if and only if there is a probability measure μ on ∂U such that

p(z) =
∫

|x |=1

1 + xz

1 − xz
dμ(x) (|z| < 1).

Theorem B [43, Theorem 3.9] Let f ∈ A. Then f ∈ S∗ if and only if there is a
probability measure μ on ∂U so that

z f ′(z)
f (z)

=
∫

|x |=1

1 + xz

1 − xz
dμ(x) (|z| < 1),

or equivalently,

f (z) = z exp

(∫
|x |=1

−2 log(1 − xz)dμ(x)

)
.

If a ∈ B(U ), then (1 + a(z))/(1 − a(z)) has positive real part for z ∈ U, and the
following result follows from Theorem A.

Lemma 1 If a ∈ B(U ) with a(0) = 0, then

a(z)

1 − a(z)
=
∫

∂U

xz

1 − xz
dμ(x) (|z| < 1)

for some probability measure μ on ∂U.

The following lemma establishes a link between starlike logharmonic functions and
starlike analytic functions.

Lemma 2 [28] Let f (z) = zh(z)g(z) be logharmonic in U. Then f ∈ ST 0
Lh if and only

if ϕ(z) = zh(z)/g(z) ∈ S∗.

Theorem 1 A logharmonic function f (z) = zh(z)g(z) belongs to ST 0
Lh if and only if

there are two probability measures μ and ν on ∂U such that

h(z) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(∫
∂U

∫
∂U

(
η + ξ

η − ξ
log

1 − ξ z

1 − ηz
− log(1 − ηz)

)
dμ(η)dν(ξ)

)
, if η 
= ξ,

exp

(∫
∂U

∫
∂U

(
2ηz

1 − ηz
− log(1 − ηz)

)
dμ(η)dν(η)

)
, if η = ξ,

(3)
and

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

exp

(∫
∂U

∫
∂U

(
η + ξ

η − ξ
log

1 − ξ z

1 − ηz
+ log(1 − ηz)

)
dμ(η)dν(ξ)

)
, if η 
= ξ,

exp

(∫
∂U

∫
∂U

(
2ηz

1 − ηz
+ log(1 − ηz)

)
dμ(η)dν(η)

)
, if η = ξ.

(4)
where |η| = |ξ | = 1.
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Complex Variables and Elliptic Equations 5

Proof Let ϕ(z) = zh(z)/g(z). Since

a(z) = zg′(z)/g(z)

1 + zh′(z)/h(z)
,

it follows that

zϕ′(z)
ϕ(z)

= 1 + zh′(z)
h(z)

− zg′(z)
g(z)

= zg′(z)
g(z)

(
1 − a(z)

a(z)

)
.

Thus

g(z) = exp

(∫ z

0

a(s)

1 − a(s)
· ϕ′(s)

ϕ(s)
ds

)
(5)

and
h(z) = ϕ(z)

z
g(z). (6)

By Lemma 2 and Theorem B,

zϕ′(z)
ϕ(z)

=
∫

|η|=1

1 + ηz

1 − ηz
dμ(η) (|z| < 1), (7)

or equivalently,

ϕ(z) = z exp

(∫
|x |=1

−2 log(1 − ηz)dμ(η)

)
. (8)

From (5), (7) and Lemma 1 imply that g can be written as

g(z) = exp

(∫ z

0

∫
∂U

∫
∂U

ξ

1 − ξs
· 1 + ηs

1 − ηs
dμ(η)dν(ξ)ds

)

for some probability measures μ and ν on U .
If η 
= ξ , then

g(z) = exp

(∫
∂U

∫
∂U

ξ

∫ z

0

(
2η

(η − ξ)(1 − ηs)
− η + ξ

(η − ξ)(1 − ξs)

)
dsdμ(η)dν(ξ)

)

= exp

(∫
∂U

∫
∂U

(
− 2ξ

η − ξ
log(1 − ηz) + η + ξ

η − ξ
log(1 − ξ z)

)
dμ(η)dν(ξ)

)

= exp

(∫
∂U

∫
∂U

(
η + ξ

η − ξ
log

1 − ξ z

1 − ηz
+ log(1 − ηz)

)
dμ(η)dν(ξ)

)
.

On the other hand, if η = ξ , then

g(z) = exp

(∫
∂U

∫
∂U

∫ z

0

η + η2s

(1 − ηs)2
dsdμ(η)dν(η)

)

= exp

(∫
∂U

∫
∂U

∫ z

0

(
2η

(1 − ηs)2
+ η2s − η

(1 − ηs)2

)
dsdμ(η)dν(η)

)

= exp

(∫
∂U

∫
∂U

(
2ηz

1 − ηz
+ log(1 − ηz)

)
dμ(η)dν(η)

)
.

The representation for h follow from g by applying (6) and (8). �
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6 R.M. Ali et al.

Let

h0(z) = 1

1 − z
exp

(
2z

1 − z

)
= exp

( ∞∑
n=1

(
2 + 1

n

)
zn

)
,

and

g0(z) = (1 − z) exp

(
2z

1 − z

)
= exp

( ∞∑
n=1

(
2 − 1

n

)
zn

)
.

Then

f0(z) = zh0(z)g0(z) = z(1 − z)

1 − z
exp

(
Re

(
4z

1 − z

))
is the logharmonic Koebe function.

Theorem 2 Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Then

1

1 + |z| exp

( −2|z|
1 + |z|

)
≤ |h(z)| ≤ 1

1 − |z| exp

(
2|z|

1 − |z|
)

, (9)

(1 + |z|) exp

( −2|z|
1 + |z|

)
≤ |g(z)| ≤ (1 − |z|) exp

(
2|z|

1 − |z|
)

, (10)

|z| exp

( −4|z|
1 + |z|

)
≤ | f (z)| ≤ |z| exp

(
4|z|

1 − |z|
)

. (11)

Equalities occur if and only if h, g, and f are respectively appropriate rotations of h0, g0
and f0.

Proof Since ϕ(z) = zh(z)/g(z) ∈ S∗, it follows from (5) that

g(z) = exp

(∫ z

0

a(s)

1 − a(s)
· ϕ′(s)

ϕ(s)
ds

)
,

and thus

h(z) = ϕ(z)

z
g(z), and f (z) = ϕ(z)|g(z)|2.

For |z| = r, the known estimates ∣∣∣∣ zϕ′(z)
ϕ(z)

∣∣∣∣ ≤ 1 + r

1 − r
,∣∣∣∣ a(z)

z(1 − a(z))

∣∣∣∣ ≤ 1

1 − r
,

and
|ϕ(z)| ≤ r

(1 − r)2

yield

|g(z)| ≤ exp

(∫ r

0

1

1 − s
· 1 + s

1 − s
ds

)
= (1 − r) exp

(
2r

1 − r

)
,

|h(z)| =
∣∣∣∣ϕ(z)

z
g(z)

∣∣∣∣ ≤ 1

(1 − r)2
· (1 − r) exp

(
2r

1 − r

)
= 1

1 − r
exp

(
2r

1 − r

)
,
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Complex Variables and Elliptic Equations 7

and

| f (z)| = |ϕ(z)| |g(z)|2 ≤ r

(1 − r)2
· (1 − r)2 exp

(
4r

1 − r

)
= r exp

(
4r

1 − r

)
.

For the left estimates, (3) gives

log |h(z)| = Re

(∫
∂U

∫
∂U

K (z, ξ, η)dμ(ξ)dν(η)

)
, |η| = |ξ | = 1,

where

K (z, ξ, η) =
{

η+ξ
η−ξ

log 1−ξ z
1−ηz − log(1 − ηz), if η 
= ξ ;

2ηz
1−ηz − log(1 − ηz), if η = ξ.

Then for |z| = r ,

log |h(z)| = Re

(∫
∂U

∫
∂U

K (z, ξ, η)dμ(ξ)dν(η)

)

≥ min
μ,ν

{
min|z|=r

Re

(∫
∂U

∫
∂U

K (z, ξ, η)dμ(ξ)dν(η)

)}

= min

{
min|z|=r

inf
0<|l|≤π/2

[
−Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2il(ηz)

1 − (ηz)

)]
− log(1 + r),

−2r

1 + r
− log(1 + r)

}

= min

{
inf

0<|l|≤π/2
min|z|=r

[
−Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2il z

1 − z

)]
− log(1 + r),

−2r

1 + r
− log(1 + r)

}
,

where e2il = ηξ.

Let

�r (l) =
⎧⎨
⎩min|z|=r

[
−Im

(
1+e2il

1−e2il

)
arg

(
1−e2il z

1−z

)]
− log(1 + r), if 0 < |l| ≤ π/2;

−2r
1+r − log(1 + r), if l = 0.

Since

min|z|=r

[
−Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2il z

1 − z

)]
= min|z|=r

Re

[
1 + e2il

1 − e2il
log

(
1 + (1 − e2il)z

1 − z

)]
,

evidently

lim
l→0

min|z|=r
Re

[
1 + e2il

1 − e2il

∞∑
k=1

(−1)k+1

k

(
(1 − e2il)z

1 − z

)k]

= min|z|=r
Re

[
2z

1 − z
+ lim

l→0

{
2

∞∑
k=2

(−1)k+1

k
(1 − e2il)k−1

(
z

1 − z

)k
}]

= min|z|=r
Re

(
2z

1 − z

)
= − 2r

1 + r
.
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8 R.M. Ali et al.

Thus, �r (l) is continuous in |l| ≤ π/2.
Moreover,

min|z|=r

[
−Im

(
1 + e−2il

1 − e−2il

)
arg

(
1 − e−2il z

1 − z

)]
= min|z|=r

[
−Im

(
1 + e2il

1 − e2il

)
arg

(
1 − z

1 − e−2il z

)]

= min|z|=r

[
−Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2il(e−2il z)

1 − (e−2il z)

)]

= min|w|=r

[
−Im

(
1 + e2il

1 − e2il

)
arg

(
1 − e2ilw

1 − w

)]

implies that �r (l) is an even function in |l| ≤ π/2. Hence

log |h(z)| ≥ inf
0≤l≤π/2

�r (l).

Since

max|z|=r
arg

(
1 − e2il z

1 − z

)
= 2 tan−1

(
r sin(l)

1 + r cos(l)

)
,

this implies that

log |h(z)| ≥ inf
0≤l≤π/2

− 2 cot(l) tan−1
(

r sin(l)

1 + r cos(l)

)
− log(1 + r).

Evidently tan−1(x) ≤ x for all x ≥ 0, and so

log |h(z)| ≥ inf
0≤l≤π/2

( −2r cos(l)

1 + r cos(l)
− log(1 + r)

)

≥ −2r

1 + r
− log(1 + r).

For the lower bound of |g(z)| in (10), a similar argument is applied to (4) which yields

log |g(z)| ≥ inf
0≤l≤π/2

( −2r cos(l)

1 + r cos(l)
+ log(1 + r)

)

≥ −2r

1 + r
+ log(1 + r).

Finally, it follows that

| f (z)| = |z||h(z)||g(z)| ≥ r

1 + r
exp

( −2r

1 + r

)
· (1 + r) exp

( −2r

1 + r

)

= r exp

( −4r

1 + r

)
,

which establishes (11). �

Remark 1 The upper bounds for |h(z)| and |g(z)| in Theorem 2 were also obtained by
Duman [44]. Here we not only established the sharp lower bounds, but also exhibit the
extremal functions.
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Complex Variables and Elliptic Equations 9

Corollary 1 Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Also, let H(z) = zh(z) and G(z) = zg(z).

Then

1

2e
≤ d(0, ∂ H(U )) ≤ 1,

2

e
≤ d(0, ∂G(U )) ≤ 1,

and
1

e2
≤ d(0, ∂ f (U )) ≤ 1.

Equalities occur if and only if h, g and f are suitable rotations of h0, g0 and f0, respectively.

Proof By (9),

d(0, ∂ H(U )) = lim inf|z|→1
|H(z) − H(0)| = lim inf|z|→1

|H(z) − H(0)|
|z| ≥ 1

2e
.

On the other hand, the minimum modulus principle shows that

d(0, ∂ H(U )) = lim inf|z|→1
|H(z) − H(0)| = lim inf|z|→1

|H(z) − H(0)|
|z| ≤ 1

since |h(0)| = 1. The same technique is applied to G and f to find the remaining
inequalities. �

4. The Bohr radius for logharmonic mappings

Consider now logharmonic mappings f (z) = zh(z)g(z) with

h(z) = exp

( ∞∑
k=1

ak zk

)
and g(z) = exp

( ∞∑
k=1

bk zk

)
.

Theorem C [29, Theorem 3.3] Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Then

|an| ≤ 2 + 1

n
and |bn| ≤ 2 − 1

n

for all n ≥ 1. Equalities hold for f a rotation of the function f0.

Our main results are the following theorems.

Theorem 3 Let f (z) = zh(z)g(z) ∈ ST 0
Lh, H(z) = zh(z) and G(z) = zg(z). Then

(a)

|z| exp

( ∞∑
n=1

|an||z|n
)

≤ d(0, ∂ H(U ))

for |z| ≤ rH ≈ 0.1222, where rH is the unique root in (0, 1) of

r

1 − r
exp

(
2r

1 − r

)
= 1

2e
,
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10 R.M. Ali et al.

(b)

|z| exp

( ∞∑
n=1

|bn||z|n
)

≤ d(0, ∂G(U ))

for |z| ≤ rG ≈ 0.3659, where rG is the unique root in (0, 1) of

r(1 − r) exp

(
2r

1 − r

)
= 2

e
.

Both radii are sharp and are attained by appropriate rotations of H0(z) = zh0(z) and
G0(z) = zg0(z), respectively.

Proof Note that

H(z) = z exp

( ∞∑
k=1

ak zk

)
and G(z) = z exp

( ∞∑
k=1

bk zk

)
.

By Theorem C,

|an| ≤ 2 + 1

n
and |bn| ≤ 2 − 1

n

which are sharp bounds and Corollary 1 gives

d(0, ∂ H(U )) ≥ 1

2e
and d(0, ∂G(U )) ≥ 2

e
.

Hence

r exp

( ∞∑
n=1

|an|rn

)
≤ r exp

( ∞∑
n=1

(
2 + 1

n

)
rn

)

= r exp

(
2r

1 − r
− log(1 − r)

)
≤ d(0, ∂ H(U ))

if and only if
r

1 − r
exp

2r

1 − r
≤ 1

2e
.

The Bohr radius, rH ≈ 0.1222 is therefore the positive solution of

r

1 − r
exp

2r

1 − r
= 1

2e
.

Likewise,

r exp

( ∞∑
n=1

|bn|rn

)
≤ r exp

( ∞∑
n=1

(
2 − 1

n

)
rn

)

= r exp

(
2r

1 − r
+ log(1 − r)

)
≤ d(0, ∂G(U ))
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Complex Variables and Elliptic Equations 11

if and only if

r(1 − r) exp
2r

1 − r
≤ 2

e
.

Hence the Bohr radius, rG is the positive solution of

r(1 − r) exp
2r

1 − r
= 2

e

which gives rG ≈ 0.3659. Finally, it is evident that both radii are attained by suitable
rotations of H0(z) and G0(z), respectively. �

Theorem 4 Let f (z) = zh(z)g(z) ∈ ST 0
Lh. Then, for any real t ,

|z| exp

( ∞∑
n=1

∣∣∣an + eit bn

∣∣∣ |z|n
)

≤ d(0, ∂ f (U ))

for |z| ≤ r0 ≈ 0.09078, where r0 is the unique root in (0, 1) of

r exp

(
4r

1 − r

)
= 1

e2
.

The bound is sharp and is attained by a suitable rotation of the logharmonic Koebe function
f0.

Proof By Theorem C,

|an| ≤ 2 + 1

n
and |bn| ≤ 2 − 1

n
.

which are sharp bounds and Corollary 1 gives

d(0, ∂ f (U )) ≥ 1

e2

which is also sharp. Thus

r exp

( ∞∑
n=1

|an|rn +
∞∑

n=1

|bn|rn

)
≤ r exp

(
4

∞∑
n=1

rn

)

= r exp

(
4r

1 − r

)
≤ d(0, ∂ f (U ))

if and only if

r exp

(
4r

1 − r

)
≤ 1

e2
.

Hence the Bohr radius, r0 is the solution of

r exp

(
4r

1 − r

)
= 1

e2

which gives r0 ≈ 0.09078. Finally, it is evident that r0 is attained by suitable rotations of
the logharmonic Koebe function, f0. �
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